COMPUTATIONAL FLUID DYNAMICS

VII Semester									
Course Code		Category	Hours / Week			Credits	Maximum Marks		
A5AE30		PCC	L	Т	Р	С	CIE	SEE	Total
			3	1	0	3	30	70	100
 COURSE OBJECTIVES: The course introduces basic aspects of the Computational Fluid Dynamics (CFD) which are involved in solving a Flow Problem using Numerical Methods. The Course shall impart knowledge of following aspects to the students. 1 Understand Basic Philosophy & ideas of CFD 2 Explaining Physics behind the Governing Equation 3 Identify Governing equations of Fluid Dynamics 4 Applications of CFD in various engineering discipline 5 Manipulating Governing Equation based on behavior of different types of PDE's and its impact on CFD 6 Describe Various Methods to discretize partial differential equation 									
 7 List out Types of grids and Needs of Grid generation 8 List out Various techniques employed in CFD to solve Governing equation 									
UNIT-I	INTRODUC	TION TO COMPUT	ATION			YNAMICS			
Introduction to computational fluid dynamics, Research tool, Design Tool, Finite control volume, infinitesimal fluid element, substantial derivatives, divergence of Velocity. Governing Equations									
UNIT-II	GOVERNING EQUATIONS OF FLUID DYNAMICS								
Form of Governing equation suited for CFD. Conservation form, Non Conservation forms, shock fitting and shock capturing. Classification of Quasi-Linear Partial differential equation, The Eigen value method, General behavior of different classes of Partial differential equation, elliptic, parabolic and hyperbolic									
UNIT-III	DISCRETIZATION AND TRANSFORMATIONS								
Introduction, Finite differences and formulas for first and second derivatives, difference equations, Explicit and implicit approaches, multidimensional finite difference formulas, finite difference formulas on non-uniform grids. Problems on 1D, 2D discretization using FDE,BDE,CDE									
UNIT-IV	GRID GENERATION								
Need for grid generation. Structured grids- Cartesian grids, stretched (compressed) grids, body fitted structured grids, Multi-block grids - overset grids with applications. Unstructured grids- triangular/ tetrahedral cells, hybrid grids, quadrilateral/hexahedra cells. Grid Generation techniques - Delaunay triangulation, Advance font method. Surface and volume estimations, grid quality and best practice guidelines. Problems on grid transformations									
UNIT-V	CFD TECHI	NIQUES							
Lax-Wendroff technique, MacCormack's technique, Crank Nicholson technique, Relaxation technique- aspects of numerical dissipation and dispersion, Alternating-Direction-Implicit (ADI) Technique. Pressure correction technique Numerical procedures- SIMPLE, SIMPLER algorithms SIMPLEC and PISO algorithms Boundary conditions for the pressure correction method. Parallel Computing.									
Text Books:									
1.John .D. Anderson "Computational Fluid Dynamics", McGraw Hill2.Hoffmann, K.A: Computational Fluid Dynamics for Engineers, Engineering Education System, Austin, Tex.,1989									

Reference Books:

- 1. J Blazek, "Computational Fluid Dynamics: Principles and Applications" Elsevier.
- 2. Chow CY," Introduction to Computational Fluid Dynamics", John Wiley, 1979

COURSE OUTCOMES:

Upon successful completion of this course, the student will have

- 1. Describe the major theories, approaches and methodologies used in CFD
- 2. Apply CFD methods (e.g. boundary conditions, turbulence modeling etc.) in commercial cfd codes and describe the limitations on accuracy
- 3. Apply CFD analysis to real engineering designs
- 4. Use finite difference and finite volume methods in CFD modeling